精英家教网 > 高中数学 > 题目详情
15.设i是虚数单位,则复数$\frac{(1+i)^{2}}{1-i}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

分析 直接利用复数的除法与乘方运算法则化简求解即可.

解答 解:复数$\frac{(1+i)^{2}}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}$=i(1+i)=-1+i.
故选:D.

点评 本题考查复数的代数形式的混合运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,G是△ABC的重心,过G的直线与边AB,AC分别相交于点E,F,若AE=mAB,AF=nAC(mn≠0),求$\frac{1}{m}$+$\frac{1}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a,b在区间[0,$\sqrt{2}$]上取值,则函数f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有两个相异极值点的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用数学归纳法证明不等式$\frac{n+2}{2}$<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$<n+1(n>1,n∈N*)的过程中,当n=2时,中间式子为(  )
A.1B.1+$\frac{1}{2}$C.1+$\frac{1}{2}$+$\frac{1}{3}$D.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x1和x2是方程x2+7x+1=0的两个根,则${x}_{1}^{2}$+x${\;}_{2}^{2}$=47.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(3-x)5的展开式中,含x3的项的系数是-90(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值:
(1)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4-sin270°+tan15°
(2)log3$\sqrt{27}$+lg25+2lg2+7${\;}^{3lo{g}_{7}2}$+$\frac{lg4+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等比数列,首项 a1=1,公比q≠0,其前n项和为Sn,且 S1+a1,S3+a3,S2+a2成等差数列
(1)求{an}通项公式
(2)若数列{ bn}满足$a_{n+1}={(\frac{1}{2})}^{a_nb_n}$,求数列{bn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求曲线f(x)在x=0处的切线方程.

查看答案和解析>>

同步练习册答案