精英家教网 > 高中数学 > 题目详情
17.已知a+a-1=2,求$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}+{a}^{-4}}$的值.

分析 由已知条件利用完全平方和公式、立方差公式结合有理数指数幂运算法则能求出结果.

解答 解:∵a+a-1=2,
∴a2+a-2=(a+a-12-2=2,
a4+a-4=(a2+a-22-2=2,
∴$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}+{a}^{-4}}$
=$\frac{(a+{a}^{-1})({a}^{2}+{a}^{-2}-1)({a}^{2}+{a}^{-2}-3)}{{a}^{4}+{a}^{-4}}$
=$\frac{2(2-1)(2-3)}{2}$
=-1.

点评 本题考查代数式的化简求值,是基础题,解题时要认真审题,注意完全平方和公式、立方差公式、有理数指数幂运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,则函数f(x)在(0,3)上的最大值为(  )
A.1B.2C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出函数y=x${\;}^{\frac{6}{5}}$的图象,并根据图象比较(-$\frac{2}{3}$)${\;}^{\frac{6}{5}}$与($\frac{3}{4}$)${\;}^{\frac{6}{5}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{{x}^{2}-x,x>0}\end{array}\right.$,
(1)作出函数的图象;
(2)根据图象判断函数的奇偶性,并写出单调区间;
(3)求函数的最小值,并求出对应的x的值;
(4)求满足f(x)=2的实数x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较大小:
(1)ln3.4,ln8.5;
(2)log0.328,log0.32.7;
(3)loga5.1,loga5.9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求${3}^{1+lo{g}_{3}6}$-${2}^{4+lo{g}_{2}3}$+103lg3+$(\frac{1}{9})^{lo{g}_{3}4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.幂函数y=(m-1)${x}^{\frac{m-1}{2}}$的单调增区间是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={y|y=log2x,x>1},B={y|y=($\frac{1}{2}$)x,x>2},则A∩B等于(  )
A.{y|0$<y<\frac{1}{4}$}B.{y|0<y<1}C.{y|$\frac{1}{4}$<y<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=2x+$\frac{2a-1}{{x}^{2}}$是奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案