精英家教网 > 高中数学 > 题目详情
11.如图,该程序的目的是求1×3×5×…×9999的值.

分析 根据题意,模拟程序的运行过程,得出该程序运行后输出的是什么.

解答 解:由算法语句知,本程序是直到型循环结构的算法,
第一次循环s=1×3=3,i=3+2=5;
第二次循环s=3×5,i=5+2=7;
第三次循环s=3×5×7,i=7+2=9;
目的是求出1×3×5×…×9999,
故答案为:1×3×5×…×9999

点评 本题考查了程序与算法语言的应用问题,解题时应模拟程序的运行过程,以便得出正确的结果,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8=180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,其中输入的ai(i=1,2,…10)依次是:-3,-4,5,3,4,-5,6,8,0,2,则输出的V值为(  )
A.16B.$\frac{8}{5}$C.$\frac{16}{9}$D.$\frac{14}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义“三角恋写法”为“三个人之间写信,每人给另外两人之一写一封信,且任意两个人不会彼此给对方写信”,若五个人a,b,c,d,e中的每个人都恰给其余四人中的某一个人写了一封信,则不出现“三角恋写法”写法的写信情况的种数为(  )
A.704B.864C.1004D.1014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一次研究性学习有“整理数据”、“撰写报告”两项任务,两项任务无先后顺序,每项任务的完成相互独立,互不影响.某班研究性学习有甲、乙两个小组.根据以往资料统计,甲小组完成研究性学习两项任务的概率都为$\frac{1}{2}$,乙小组完成研究性学习两项任务的概率都为q.若在一次研究性学习中,两个小组完成任务项数相等,而且两个小组完成任务数都不少于一项,则称该班为“和谐研究班”.
(Ⅰ)若q=$\frac{2}{3}$,求在一次研究性学习中,已知甲小组完成两项任务的条件下,该班荣获“和谐研究班”的概率;
(Ⅱ)设在完成4次研究性学习中该班获得“和谐研究班”的次数为ξ,若ξ的数学期望Eξ≥1,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
不常喝常喝合计
肥胖xy50
不肥胖401050
合计AB100
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为$\frac{3}{5}$
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
附:参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2≥k)0.050.0250.0100.0050.001
k3.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用2,3,4,5四个数组成没有重复数字的三位数,其中共有偶数(  )
A.3个B.4个C.6个D.12个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.观察下面的解答过程:已知正实数a,b满足a+b=1,求$\sqrt{2a+1}$+$\sqrt{2b+1}$的最大值.
解:∵$\sqrt{2a+1}$•$\sqrt{2}$≤$\frac{(\sqrt{2a+1})^{2}+{\sqrt{2}}^{2}}{2}$=a+$\frac{3}{2}$,$\sqrt{2b+1}$•$\sqrt{2}$≤$\frac{{\sqrt{2b+1}}^{2}{+\sqrt{2}}^{2}}{2}$=b+$\frac{3}{2}$,
相加得$\sqrt{2a+1}$•$\sqrt{2}$+$\sqrt{2b+1}$•$\sqrt{2}$=$\sqrt{2}$•($\sqrt{2a+1}$+$\sqrt{2b+1}$)≤a+b+3=4,
∴$\sqrt{2a+1}$+$\sqrt{2b+1}$≤2$\sqrt{2}$,等号在a=b=$\frac{1}{2}$时取得,即$\sqrt{2a+1}$+$\sqrt{2b+1}$的最大值为2$\sqrt{2}$.
请类比以上解题法,使用综合法证明下题:
已知正实数x,y,z满足x+y+z=3,求$\sqrt{2x+1}$+$\sqrt{2y+1}$+$\sqrt{2z+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=x|x-a|,若对于任意的x1,x2∈[-2,+∞),x1≠x2,不等式$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0恒成立,则实数a的取值范围是(-∞,-4]∪{0}.

查看答案和解析>>

同步练习册答案