设
、
分别是椭圆
的左.右焦点.
(1)若
是该椭圆上的一个动点,求![]()
的取值范围;
(2)设过定点Q(0,2)的直线
与椭圆交于不同的两点M.N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设
是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E.F两点.求四边形
面积的最大值.
解法一:易知![]()
所以
,设
,则
![]()
![]()
故
.………………………………………………………………2分
(2)显然直线
不满足题设条件,可设直线
,
联立
,消去
,整理得:
………………3分
∴![]()
由
得:
……………5分
又0°<∠MON<90°
cos∠MON>0![]()
>0
∴![]()
又![]()
![]()
![]()
∵
,即
∴![]()
故由①.②得
或
…………………………………7分
(3)解法一:根据点到直线的距离公式和①式知,点
到
的距离分别为
,
.………………………9分
又
,
所以四边形
的面积为
=![]()
![]()
![]()
,
…………………………………………………11分
当
,即当
时,上式取等号.所以
的最大值为
.………12分
解法二:由题设,
,
.
设
,
,由①得
,
,……………………9分
故四边形
的面积为![]()
![]()
![]()
![]()
![]()
,
…………………………………………………11分
当
时,上式取等号.所以
的最大值为
.………………………12分
科目:高中数学 来源: 题型:
设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求
·
的最大值和最小值;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求
·
的最大值和最小值;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年甘肃省高三上学期期末考试理科数学试卷 题型:解答题
(本题满分12分)设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求
的最大值和最小值;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年河北省高二第二学期期末数学(理)试题 题型:解答题
(本小题满分12分)[来源:学.科.网Z.X.X.K]
设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求![]()
的取值范围;
(2)设过定点Q(0,2)的直线
与椭圆交于不同的两点M、N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设
是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2010年北京市高二上学期期中考试理科数学卷 题型:解答题
(本题满分14分)设
、
分别是椭圆![]()
的左、右焦点,过
且斜率为
的直线
与
相交于
、
两点,且
、
、
成等差数列.
(1)若
,求
的值;
(2)若
,设点
满足
,求椭圆
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com