精英家教网 > 高中数学 > 题目详情

在△ABC中,∠BAC=120°,|数学公式|=2,|数学公式|=1,点P满足数学公式数学公式(0≤λ≤1),则数学公式的取值范围是


  1. A.
    [数学公式,3]
  2. B.
    [数学公式,5]
  3. C.
    [-2,数学公式]
  4. D.
    [数学公式,5]
D
分析:由余弦定理得,BC2=AB2+AC2-2AB•ACcos∠BAC可求BC,然后由正弦定理得,可求sinB,然后可求cosB,而利用向量的数量积可转化为关于λ的二次函数,结合二次函数在闭区间上的最值即可求解
解答:在△ABC中,∠BAC=120°中,
根据余弦定理得,BC2=AB2+AC2-2AB•ACcos∠BAC
=
=
根据正弦定理得,

∴sinB=
∴cosB=
从而有=
=
=
又0≤λ≤1,所以的取值范围是
故选D
点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,向量的数量积的应用及二次函数的性质的灵活应用是求解的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,|
BA
|=|
BC
|
,延长CB到D,使
AC
AD
,若
AD
AB
AC
,则λ-μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
),为奇函数,则a=1;
(2)函数f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),则
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,则△ABC是钝角三角形
( 5)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心.
以上命题为真命题的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中
a+b
a-b
等于(  )
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )
A.[
π
4
π
3
]
B.[
π
6
π
4
]
C.[
π
6
π
3
]
D.[
π
3
π
2
]

查看答案和解析>>

同步练习册答案