ÏÂÁÐÃüÌ⣺
£¨1£©Èôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©£¬ÎªÆ溯Êý£¬Ôòa=1£»
£¨2£©º¯Êýf£¨x£©=|sinx|µÄÖÜÆÚT=¦Ð£»
£¨3£©ÒÑÖª
a
=(sin¦È£¬
1+cos¦È
)£¬
b
=(1£¬
1-cos¦È
)
£¬ÆäÖЦȡʣ¨¦Ð£¬
3¦Ð
2
£©£¬Ôò
a
¡Í
b

£¨4£©ÔÚ¡÷ABCÖУ¬
BA
=a£¬
AC
=b£¬Èôa•b£¼0£¬Ôò¡÷ABCÊǶ۽ÇÈý½ÇÐÎ
£¨ 5£©OÊÇ¡÷ABCËùÔÚƽÃæÉÏÒ»¶¨µã£¬¶¯µãPÂú×㣺
OP
=
OA
+¦Ë(
AB
sinC
+
AC
sinB
)
£¬¦Ë¡Ê£¨0£¬+¡Þ£©£¬ÔòÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®
ÒÔÉÏÃüÌâΪÕæÃüÌâµÄÊÇ
£¨1£©£¨2£©£¨3£©£¨5£©
£¨1£©£¨2£©£¨3£©£¨5£©
£®
·ÖÎö£º£¨1£©Èôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©ÎªÆ溯Êý£¬Ôòf£¨0£©=0£¬Ôò´ËÄÜÇó³öaµÄÖµ£»
£¨2£©ÓÉÕýÏÒº¯ÊýµÄͼÏóÖªº¯ÊýÄÜÇó³öf£¨x£©µÄÖÜÆÚ£»
£¨3£©Ð´³öÁ½¸öÏòÁ¿µÄÊýÁ¿»ý£¬ÔËÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØϵʽÕûÀí¼´¿ÉµÃµ½½áÂÛ£»
£¨4£©ÔÚ¡÷ABCÖУ¬
BA
=
a
£¬
AC
=
b
£¬
a
b
£¼0£¬Ôò¡ÏBACÊÇÈñ½Ç£¬ÓÉ´ËÎÞ·¨Åжϡ÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ»
£¨5£©°Ñ¸ø³öµÈʽÖеĽǵÄÕýÏÒÖµÓöÔÓ¦±ß³¤ºÍÍâ½ÓÔ²°ë¾¶±íʾ£¬ÒÆÏòÕûÀíºóµÃ
AP
=2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬ÓÉ´Ëʽ¿ÉÖªÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®
½â´ð£º½â£ºÈôº¯Êýf£¨x£©=lg£¨x+
x2+a
£©ÎªÆ溯Êý£¬
Ôòf£¨0£©=lg£¨0+
0+a
£©=lg
a
=0£¬½âµÃa=1£¬¹Ê£¨1£©³ÉÁ¢£»
ÓÉÕýÏÒº¯ÊýµÄͼÏóÖªº¯Êýf£¨x£©=|sinx|µÄÖÜÆÚT=¦Ð£¬¹Ê£¨2£©³ÉÁ¢£»
¡ß
a
=(sin¦È£¬
1+cos¦È
)£¬
b
=(1£¬
1-cos¦È
)
£¬ÆäÖЦȡʣ¨¦Ð£¬
3¦Ð
2
£©£¬
¡à
a
b
=sin¦È+
1-cos2¦È
=sin¦È-sin¦È=0£¬
¡à
a
¡Í
b
£¬¹Ê£¨3£©³ÉÁ¢£»
ÔÚ¡÷ABCÖУ¬
BA
=
a
£¬
AC
=
b
£¬
a
b
£¼0£¬
Ôò¡ÏBACÊÇÈñ½Ç£¬¡÷ABC²»Ò»¶¨ÊǶ۽ÇÈý½ÇÐΣ¬¹Ê£¨4£©²»³ÉÁ¢£»
Èçͼ£¬

ÔÚ¡÷ABCÖУ¬ÓÉ
|
AB
|
sinC
=
|
AC
|
sinB
=2R£¨RΪÈý½ÇÐÎABCÍâ½ÓÔ²°ë¾¶£©£¬
ËùÒÔsinC=
|
AB
|
2R
£¬sinB=
|
AC
|
2R
£¬
ËùÒÔ
OP
=
OA
+¦Ë£¨
AB
sinC
+
AC
sinB
£©=
OA
+¦Ë£¨
2R
AB
|
AB
|
+
2R
AC
|
AC
|
£©=
OA
+2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬
¼´
AP
=2R¦Ë£¨
AB
|
AB
|
+
AC
|
AC
|
£©£¬
ËùÒÔÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ£®¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£¨3£©£¨5£©£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙµÄÅжÏÓëÔËÓã¬ÊÇÖеµÌ⣮½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÆ溯Êý¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢Èý½Çº¯Êý¡¢ÕýÏÒ¶¨ÀíµÈ֪ʶµãµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌâÖÐ
¢Ùµ±n=0ʱ£¬Ãݺ¯Êýy=xnµÄͼÏóÊÇÒ»ÌõÖ±Ïß
¢ÚÃݺ¯ÊýµÄͼÏ󶼾­¹ýµã£¨0£¬0£©£¬£¨1£¬1£©
¢ÛÃݺ¯ÊýµÄͼÏ󲻿ÉÄܳöÏÖÔÚµÚËÄÏóÏÞ
¢ÜÈôÃݺ¯Êýy=xnÊÇÆ溯Êý£¬Ôòy=xnÔÚÆ䶨ÒåÓòÉÏÊÇÔöº¯Êý
¢ÝÃݺ¯Êýy=xnµ±n£¼0ʱ£¬ÔÚµÚÒ»ÏóÏÞÄÚº¯ÊýÖµËæxÖµµÄÔö´ó¶ø¼õС
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
¢Û¢Ý
¢Û¢Ý
£¨½«ËùÑ¡ÃüÌâµÄÐòºÅ¾ùÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌâÕýÈ·µÄÓУ¨¡¡¡¡£©
¢Ù¶ÔÈÎÒâʵÊýa¡¢b£¬¶¼ÓÐ|a+b|+|a-b|¡Ý2a
¢Úº¯Êýy=x
1-x2
£¨0£¼x£¼1£©µÄ×î´óº¯ÊýֵΪ
1
2
£»
¢Û¶Ôa¡ÊR£¬²»µÈʽ|x|£¼aµÄ½â¼¯¿É±íʾΪ{x|-a£¼x£¼a}£»
¢ÜÈôAB¡Ù0£¬Ôòlg
|A|+|B|
2
¡Ý
lg|A|+lg|B|
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ËìÄþ¶þÄ££©É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬Èô´æÔÚ·ÇÁãʵÊý£¬Ê¹µÃ¶ÔÓÚÈÎÒâx¡ÊM£¨M⊆D£©£¬ÓÐx+l¡ÊD£¬f£¨x+l£©¡Ýf£¨x£©£¬Ôò³Æf£¨x£©ÎªMÉϵÄl¸ßµ÷º¯Êý£¬ÏÖ¸ø³öÏÂÁÐÃüÌ⣺
¢Ùº¯Êýf(x)=(
12
)x
ΪRÉϵÄ1¸ßµ÷º¯Êý£»
¢Úº¯Êýf £¨x£©=sin 2xΪRÉϵĸߵ÷º¯Êý£»
¢ÛÈç¹û¶¨ÒåÓòÊÇ[-1£¬+¡Þ£©µÄº¯Êýf£¨x£©=x2Ϊ[-1£¬+¡Þ£©ÉϵÄm¸ßµ÷º¯Êý£¬ÄÇôʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ[2£¬+¡Þ£©£»
¢ÜÈç¹û¶¨ÒåÓòΪRµÄº¯½Ìf £¨x£©ÊÇÆ溯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=|x-a2|-a2£¬ÇÒf£¨x£©ÎªRÉϵÄ4¸ßµ÷º¯Êý£¬ÄÇôʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[Ò»1£¬1]£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
 £¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÏÂÁÐÃüÌâÕýÈ·µÄÓУ¨¡¡¡¡£©
¢Ù¶ÔÈÎÒâʵÊýa¡¢b£¬¶¼ÓÐ|a+b|+|a-b|¡Ý2a
¢Úº¯Êýy=x
1-x2
£¨0£¼x£¼1£©µÄ×î´óº¯ÊýֵΪ
1
2
£»
¢Û¶Ôa¡ÊR£¬²»µÈʽ|x|£¼aµÄ½â¼¯¿É±íʾΪ{x|-a£¼x£¼a}£»
¢ÜÈôAB¡Ù0£¬Ôòlg
|A|+|B|
2
¡Ý
lg|A|+lg|B|
2
£®
A£®¢Ù¢Ú¢ÜB£®¢Û¢ÜC£®¢Ú¢ÛD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêËÄ´¨Ê¡ÑÅ°²Êи߶þ£¨ÉÏ£©ÆÚÄ©ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÏÂÁÐÃüÌâÕýÈ·µÄÓУ¨ £©
¢Ù¶ÔÈÎÒâʵÊýa¡¢b£¬¶¼ÓÐ|a+b|+|a-b|¡Ý2a
¢Úº¯Êýy=x£¨0£¼x£¼1£©µÄ×î´óº¯ÊýֵΪ£»
¢Û¶Ôa¡ÊR£¬²»µÈʽ|x|£¼aµÄ½â¼¯¿É±íʾΪ{x|-a£¼x£¼a}£»
¢ÜÈôAB¡Ù0£¬Ôòlg¡Ý£®
A£®¢Ù¢Ú¢Ü
B£®¢Û¢Ü
C£®¢Ú¢Û
D£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸