精英家教网 > 高中数学 > 题目详情

求将直线x+2y+3=0沿x轴的负方向平移2个单位后所得到的直线方程.

[解析] 直线x+2y+3=0的斜率为-

x轴的交点为(-3,0),

所求直线与直线x+2y+3=0平行,

且与x轴的交点为(-5,0),

故所求直线方程为y=-(x+5),

x+2y+5=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
已知矩阵M=(
2a
2b
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
x=sinα
y=2cos2α-2

(a为餓),曲线D的鍵标方程为ρsin(θ-
π
4
)=-
3
2
2

(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个A.选修4-1(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.选修4-2(矩阵与变换)
将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
C.选修4-4(坐标系与参数方程)
求直线
x=1+2t
y=1-2t
(t为参数)被圆
x=3cosa
y=3sina
(α为参数)截得的弦长.
D.选修4-5(不等式选讲)
已知x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数y=f(x)的图象可由y=sinx的图象经过如下变换得到:
①将y=sinx的图象的纵坐标保持不变,横坐标缩短为原来的
2
π

②将①中的图象整体向左平移
2
3
个单位;
③将②中的图象的横坐标保持不变,纵坐标伸长为原来的
3
倍.
(Ⅰ)求f(x)的周期和单调减区间
(Ⅱ)函数f(x)的部分图象如图所示,若直线x-2y-
4
3
=0
与函数y=f(x)的图象交于A,B,C三点,试求:
OC
•(
OA
+
OB
)
的值.

查看答案和解析>>

同步练习册答案