精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,△PCD为等边三角形,四边形ABCD为矩形,平面PDC丄平面ABCD,M、N、E分别是AB、PD、PC的中点,AB=2AD.
(Ⅰ)求证DE丄MN;
(Ⅱ)求二面角B-PA-D的余弦值.

解:(Ⅰ)过P作PO⊥CD于O,则O为CD的中点
∵平面PDC丄平面ABCD,∴PO⊥平面ABCD
建立如图所示的直角坐标系,设AD=2,则AB=4


,∴
∴DE丄MN;
(Ⅱ)设为平面PAB的一个法向量,而


又设为平面PAD的一个法向量,而



从而可知,二面角B-PA-D的余弦值为

分析:(Ⅰ)建立空间直角坐标系:过P作PO⊥CD于O,则O为CD的中点,由平面PDC丄平面ABCD,知PO⊥平面ABCD,用坐标表示向量,进而证明,从而得证;
(Ⅱ)分别求出平面PAB、平面PAD的一个法向量,再利用数量积公式求夹角.
点评:本题的考点是用空间向量求平面角的夹角,主要考查空间直角坐标系的建立,考查用坐标表示向量,考查用空间向量的方法解决线线位置关系,求二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案