精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N+
(Ⅰ)求的q值;
(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{bn}的前n和Tn
分析:(Ⅰ)先令n=1得到a1,然后当n≥2时,利用an=Sn-sn-1得到an的通项公式,因为a1符合n≥2时,an的形式,把n=1代入求出q即可;
(Ⅱ)a1与a5的等差中项为18得a3=
a1+a5
2
,求出a3,代入通项公式求出p的值,得到an,把an代入到an=2log2bn,得到bn的通项公式,发现{bn}是首项为2,公比为16的等比数列,利用等比数列的求和公式求出即可.
解答:解:(Ⅰ)当n=1时,a1=S1=p-2+q
当n≥2时,an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2
∵{an}是等差数列,a1符合n≥2时,an的形式,
∴p-2+q=2p-p-2,
∴q=0
(Ⅱ)∵a3=
a1+a5
2
,由题意得a3=18
又a3=6p-p-2,∴6p-p-2=18,解得p=4
∴an=8n-6
由an=2log2bn,得bn=24n-3
b1=2,
bn+1
bn
=
24(n+1)-3
24n-3
=24=16
,即{bn}是首项为2,公比为16的等比数列
∴数列{bn}的前n项和Tn=
2(1-16n)
1-16
=
2
15
(16n-1)
点评:考查学生会利用等差数列的前n+1项的和与前n项的和相减得到等差数列的通项公式,以及会求等比数列的前n项的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案