精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,平面的中点,的中点,点上,.

(1)证明:平面

(2)若,求点到平面的距离.

【答案】(Ⅰ)证明过程见解析;(Ⅱ).

【解析】试题分析:(Ⅰ)取的中点,利用中位线的性质,可证明平面GEF//平面ABC,进而得到EF//平面ABC;(Ⅱ)由题意可得到,可通过体积转换,将体积看成以平面为底,即可求出点到平面的距离.

试题解析:(Ⅰ)证明:如图,取AD中点G,连接GEGF,则GE//ACGF//AB

因为GEGF=GACAB=A,所以平面GEF//平面ABC

所以EF//平面ABC

(Ⅱ)∵平面ABC,∴

平面PAB

记点P到平面BCD的距离为d,则

所以,点P到平面BCD的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(2x﹣ ),x∈R.

(1)在给定的平面直角坐标系中,画函数f(x)=2sin(2x﹣ ),x∈[0,π]的简图;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的单调增区间;
(3)函数g(x)=2cos2x的图象只经过怎样的平移变换就可得到f(x)=2sin(2x﹣ ),x∈R的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最大值和最小值;

(2)设曲线轴正半轴的交点为处的切线方程为,求证:对于任意的正实数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,圆心到抛物线准线的距离为3,点是抛物线在第一象限上的点,过点作圆的两条切线,分别与轴交于两点.

(1)求抛物线的方程;

(2)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆 的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求的方程;

(2)设过点的动直线相交于两点,当的面积最大时,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知,函数

)若,求曲线在点处的切线方程.

)若,求在闭区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于AB两点.

(1)用p表示线段AB的长;

(2)若,求这个抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1,F2为椭圆C: 的左右焦点,点为其上一点,且有.

(1)求椭圆C的标准方程;

(2)圆O是以F1,F2为直径的圆,直线l: y =k x + m与圆O相切,并与椭圆C交于不同的两点A,B,若,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%)的几组相关对应数据:

x

1

2

3

4

5

y

0.02

0.05

0.1

0.15

0.18

(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;

(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)

附: .

查看答案和解析>>

同步练习册答案