精英家教网 > 高中数学 > 题目详情
对于函数f(x)=
13x+1+3
+a,a∈R

(1)探索函数y=f(x)的单调性,并用单调性定义证明;
(2)是否存在实数a,使函数y=f(x)为奇函数?
分析:(1)函数的定义域为R,设x1<x2 ,计算 f(x1)-f(x2)>0,即f(x1)>f(x2),可得f(x)在R上为减函数.
(2)要使函数y=f(x)为奇函数,则有f(0)=0,求得a的值.此时,经过检验有f(x)+f(-x)=0成立,可得结论.
解答:解:(1)函数的定义域为R 设x1<x2 ,∵f(x1)-f(x2)=
1
3x1+1+3
-
1
3x2+1+3
=
3x2+1-3x1+1
(3x1+1+3)(3x2+1+3)
>0,
∴f(x1)>f(x2),f(x)在R上为减函数.
(2)要使函数y=f(x)为奇函数,则有f(0)=0,∴a=-
1
6

此时,f(x)=
1
3(3x+1)
-
1
6
,f(-x)=
3x
3(3x+1)
-
1
6
,∵f(x)+f(-x)=0,
∴a=-
1
6
时,f(x)为奇函数.
点评:本题主要考查函数的单调性的判断和证明,奇函数的定义和性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=
x1+|x|
 (x∈R)
,下列判断中,正确结论的序号是
①②
①②
(请写出所有正确结论的序号).
①f(-x)+f(x)=0;      
②当m∈(0,1)时,方程f(x)=m总有实数解;
③函数f(x)的值域为R;   
④函数f(x)的单调减区间为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=1-2cos2(x+
π
4
)-
3
cos2x
,给出下列四个命题:
(1)函数在区间[
12
11π
12
]
上是减函数;
(2)直线x=
π
6
是函数图象的一条对称轴;
(3)函数f(x)的图象可由函数y=2sin2x的图象向右平移
π
3
而得到;
(4)若 R,则f(x)=f(2-x),且的值域是[-
3
,2]

其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于“函数f(x)=
1
-x2+2x+3
是否存在最值的问题”,你认为以下四种说法中正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数f(x)=1-2cos2(x+
π
4
)-
3
cos2x
,给出下列四个命题:
(1)函数在区间[
12
11π
12
]
上是减函数;
(2)直线x=
π
6
是函数图象的一条对称轴;
(3)函数f(x)的图象可由函数y=2sin2x的图象向右平移
π
3
而得到;
(4)若 R,则f(x)=f(2-x),且的值域是[-
3
,2]

其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于“函数f(x)=
1
-x2+2x+3
是否存在最值的问题”,你认为以下四种说法中正确的是(  )
A.有最大值也有最小值B.无最大值也无最小值
C.有最大值而无最小值D.无最大值而有最小值

查看答案和解析>>

同步练习册答案