精英家教网 > 高中数学 > 题目详情

(12分)定义的“倒平均数”为,已知数列项的“倒平均数”为

    (1)记,试比较的大小;

    (2)是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.

解析:(1)记数列的前项和为,则依题有

,故

故数列的通项为.故,易知,

(2)假设存在实数,使得当时,对任意恒成立,则对任意都成立,

,有.故存在最大的实数符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).
(1)若数列{an}前n项的“倒平均数”为
1
2n+4
,求{an}的通项公式;
(2)设数列{bn}满足:当n为奇数时,bn=1,当n为偶数时,bn=2.若Tn为{bn}前n项的倒平均数,求
lim
n→∞
Tn

(3)设函数f(x)=-x2+4x,对(1)中的数列{an},是否存在实数λ,使得当x≤λ时,f(x)≤
an
n+1
对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市嘉定区高三年级第一次质量调研理科数学 题型:解答题

(本题满分16分)定义,…,的“倒平均数”为).已知数列项的“倒平均数”为,记).

(1)比较的大小;

(2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.

(3)设数列满足),),且是周期为的周期数列,设项的“倒平均数”,求

 

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

定义x1,x2,…,xn的“倒平均数”为(n∈N*).已知数列{an}前n项的“倒平均数”为,记cn=(n∈N*).
(1)比较cn与c n+1的大小;
(2)设函数f(x)=﹣x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn﹣1﹣bn﹣2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求Tn

查看答案和解析>>

同步练习册答案