(本小题满分12分)已知函数
=
(
为实常数).
(1)若函数
在
=1处与
轴相切,求实数
的值.
(2)若存在
∈[1,
],使得
≤
成立,求实数
的取值范围.
(1)
=
;(2)a的取值范围是
.
【解析】(1)先求出原函数的导数
=
=欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a的方程求得a的值
(2)存在
∈[1,
],使得
≤
成立,
不等式
, 可化为
.
∵
, ∴
且等号不能同时取,所以
,即
,
因而
(
)构造函数利用导数求解最大值即可。
解:(1)
=
=
,由
在
=1处与
轴相切知,
=0,即
=0
解得,
=
;
(2)不等式
, 可化为
.
∵
, ∴
且等号不能同时取,所以
,即
,
因而
(
)
令
(
),又
,
当
时,
,
,
从而
(仅当x=1时取等号),所以
在
上为增函数,
故
的最小值为
,所以a的取值范围是
.
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com