精英家教网 > 高中数学 > 题目详情
函数在定义域R上不是常数函数,且满足条件:对任意R,
都有,则
A.奇函数但非偶函数B.偶函数但非奇函数
C.既是奇函数又是偶函数D.是非奇非偶函数
B
分析:根据对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),知f(2+x)=f[1+(1+x)]=-f(1+x)=f(x),f(2-x)=f[1+(1-x)]=-f(1-x)=f(-x),故f(x)为偶函数,反之易得函数f(x)不可能为奇函数,即可得答案.
解答:解:∵对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x)
∴f(2+x)=f[1+(1+x)]=-f(1+x)=f(x),f(2-x)=f[1+(1-x)]=-f(1-x)=f(-x)
∴f(x)=f(-x)
故f(x)为偶函数
又∵既是奇函数又是偶函数只有常数函数,函数f(x)在定义域R上不是常数函数
∴函数f(x)不可能为奇函数
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在其定义域内既是增函数又是奇函数的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的以为周期的奇函数,若,则实数的取值范围
是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数的图象关于原点对称,且
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式
(Ⅲ)若上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,若能表示成一个奇函数和一个偶函数的和.
(Ⅰ)求的解析式;
(Ⅱ)若在区间上都是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知定义域为R的函数为奇函数,且满足,当x∈[0,1]时,.
(1)求在[-1,0)上的解析式;
(2)求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数为奇函数,,则
等于(   )
A.2B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知R上的奇函数都有成立,则等于     

查看答案和解析>>

同步练习册答案