图2-1-21
(1)求证:∠1=∠2;
(2)求证:AB·AC=AE·AD;
(3)作OH⊥AB,垂足为H.求证:.
思路分析:(1)∠1与∠2均为圆周角,要证它们相等,只需证所对的弧相等,弧BD与弧FC夹在BC与DF之间,只需证DF∥BC即可.?
(2)要证等积式,可先证比例式=,而这可由△ABD∽△AEC证得.?
(3)要证,联想到中位线定理,可先证.
证明:(1)连结DF,∵AD为直径,∴∠AFD =90°.?
又BC⊥AF,∴DF∥BC.?
∴ =.∴∠1=∠2.?
(2)连结BD,∵AD为直径,∴∠ABD =90°.?
又AE⊥BC,∴∠AEC=90°.?
∴∠ABD =∠AEC.?
又∠1=∠2,?
∴△ABD∽△AEC(或由∠1=∠2,∠ACB =∠ADB可知△ABD∽△AEC).?
∴=,?
即AB·AC =AE·AD.?
(3)连结CF,∵AD为直径,∴∠ABD =90°.?
又OH⊥AB,∴OH∥BD.?
∴H为AB中点,即OH为△ABD的中位线.?
∴.?
又 =,∴BD =CF.?
∴.
科目:高中数学 来源: 题型:
(1)若C、D是AB的三等分点,求、.(用e1、e2表示)
(2)若C、D、E是AB的四等分点,求、、.(用e1、e2表示)
图2-2-21
查看答案和解析>>
科目:高中数学 来源: 题型:
己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.
20.如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。
(1)求证:平面;
(2)设二面角的平面角为,若,求线段长的取值范围。
21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数 ,
(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;
(2)如果当时,都有恒成立,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(12分)评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方 图,如图所示,已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为 12 ,请解答下列问题:(1)本次活动共有多少件作品参加评比?
(2)那组上交的作品量最多?有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率高?
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com