分析 先分类讨论,当x=0时,或当x≠0时,分离参数得到a≥$\frac{1-{e}^{x}}{x}$,在x∈(0,+∞)上恒成立,两次构造函数,求出函数的最值,问题得以解决.
解答 解:由f(x)=x2(ex-1)+ax3若当x≥0时,f(x)≥0恒成立,
∴x2(ex-1)+ax3≥0,在x∈[0,+∞)上恒成立,
当x=0时,成立,a∈R,
当x≠0
∴a≥$\frac{1-{e}^{x}}{x}$,在x∈(0,+∞)上恒成立,
设g(x)=$\frac{1-{e}^{x}}{x}$,x∈(0,+∞),
∴g′(x)=$\frac{{e}^{x}(1-x)-1}{{x}^{2}}$,
设h(x)=ex(1-x)-1,
∴h′(x)=-xex<0在(0,+∞)恒成立,
∴h(x)在(0,+∞)为减函数,
∴h(x)<h(0)=-1,
∴g′(x)<0在(0,+∞)恒成立,
∴g(x)在(0,+∞)为减函数,\
∵1-ex<0,
∴g(x)<0
综上所述a≥0
故答案为:[0,+∞).
点评 本题考查了不等式恒成立问题的基本思路,一般是转化为函数的最值问题求解,能分离参数的尽量分离参数,注意导数在研究函数最值问题中的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{8}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{400π}{3}$ | B. | 150π | C. | $\frac{500π}{3}$ | D. | $\frac{600π}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com