精英家教网 > 高中数学 > 题目详情
17.$\sqrt{6}$+$\sqrt{7}$与2$\sqrt{2}$+$\sqrt{5}$的大小关系为>.

分析 平方作差即可得出.

解答 解:∵$(\sqrt{6}+\sqrt{7})^{2}$-$(2\sqrt{2}+\sqrt{5})^{2}$
=13+2$\sqrt{42}$-(13+4$\sqrt{10}$)
=$2(\sqrt{42}-\sqrt{40})$>0,
∴$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$,
故答案为:>.

点评 本题考查了平方作差比较两个数的大小关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知{an}为等差数列,若a1+a5+a9=5π,则cos(a2+a8)为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将曲线C:(x-2)2+y2=4图象上每一点的横坐标缩短为原来的$\frac{1}{2}$,再向左平移1个单位,得到曲线C1的图象,若曲线C1上存在点P,使得点P到点$F(0,\sqrt{3})$的距离与点P到直线$l:y=\sqrt{2}x+2\sqrt{3}$的距离相等,则点P的坐标为($\frac{\sqrt{3}}{3}$,-$\frac{2\sqrt{6}}{3}$)或(-$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{6}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是(  )
A.5B.7C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则z=2x+3y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.①求下列函数的定积分:(1)${∫}_{0}^{2}$(3x2+4x3)dx;(2)${∫}_{0}^{1}$(ex+2x)dx
②求下列函数的导数:(1)y=$\frac{{x}^{2}+sin2x}{{e}^{x}}$   (2)y=ln$\frac{2x+1}{2x-1}$($x>\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2(ex-1)+ax3若当x≥0时,f(x)≥0恒成立,则a的取值范围[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(ax2+x+1)ex
(1)若曲线y=f(x)在x=1处的切线与x轴平行,求a的值,并讨论f(x)的单调性;
(2)当a=0时,是否存在实数m使不等式mx+1≥-x2+4x+1和2f(x)≥mx+1恒成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案