精英家教网 > 高中数学 > 题目详情
2.设$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

分析 利用指数函数和对数函数的单调性求解.

解答 解:∵$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,
∴$a=(\frac{1}{3})^{\frac{1}{2}}$>b=($\frac{1}{3}$)${\;}^{\frac{3}{4}}$>$\frac{1}{3}$,
c=$lo{g}_{3}\frac{9}{10}$<log31=0,
∴c<b<a.
故选:B.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数和对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿          性别
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否在犯错误的概率不超过1%的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?
参考公式:$k2=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=2cos(\frac{π}{3}-\frac{x}{2})$.
(1)求f(x)的周期;
(2)求f(x)的单调递增区间;
(3)当x∈[0,2π]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=asin(x-1)-lnx在区间(0,1)上为减函数,其中a∈R.
(1)求a的取值范围;
(2)证明:$sin\frac{1}{2^2}+sin\frac{1}{3^2}+…+sin\frac{1}{{{{(n+1)}^2}}}<ln2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$\sqrt{6}$+$\sqrt{7}$与2$\sqrt{2}$+$\sqrt{5}$的大小关系为>.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过点M(0,1)作直线,使它被两直线l1:y=$\frac{x}{3}$+$\frac{10}{3}$,l2:y=-2x+8所截得的线段恰好被点M平分,求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0.
(1)求数列{an}的通项公式;
(2)设sn=|a1|+|a2|+…+|an|,求sn
(3)令${b_n}=(3n-9+{a_n})•{(\frac{10}{11})^n}$,试问数列{bn}有没有最大项?若有,求出最大项和最大项的项数;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax2+lnx.(a∈R)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-$\frac{1}{2}$的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P(1,b)是函数f(x)=x3+ax2图象上的一点,在点P处切线的斜率为-3,g(x)=x3+$\frac{t-6}{2}$x2+(t-$\frac{1}{2}$)x-$\frac{1}{2}$(t>0).
(Ⅰ)求a,b的值;
(Ⅱ)当x∈[-1,4]时,求f(x)的最大值和最小值;
(Ⅲ)当x∈[1,4]时,不等式f(x)≤g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案