精英家教网 > 高中数学 > 题目详情
7.过点M(0,1)作直线,使它被两直线l1:y=$\frac{x}{3}$+$\frac{10}{3}$,l2:y=-2x+8所截得的线段恰好被点M平分,求此直线方程.

分析 设所求的方程与已知的直线l1,l2分别交于A、B两点,因为B在直线直线l2上,可设B(t,8-2t),因为M为线段AB的中点,利用中点坐标公式即可表示出A点的坐标,把A的坐标代入直线l1的解析式中,即可求出t的值,得到A与B两点的坐标,根据两点坐标写出所求直线的方程即可.

解答 解:设所求直线与已知直线l1,l2分别交于A、B两点.
∵点B在直线l2:y=-2x+8上,
故可设B(t,8-2t).又M(0,1)是AB的中点,
由中点坐标公式得A(-t,2t-6).
∵A点在直线l1:y=$\frac{x}{3}$+$\frac{10}{3}$上,
∴(-t)-3(2t-6)+10=0,解得t=4.
∴B(4,0),A(-4,2),
故所求直线方程为:x+4y-4=0.

点评 此题考查学生灵活运用中点坐标公式化简求值,会求两直线的交点坐标,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为M、N,则M-N的值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC的内角A,B,C的对边分别为a,b,c,若${b^2}+{c^2}-{a^2}=\sqrt{3}bc$,则角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的公差$d=\frac{3}{4}$,${a_{30}}=15\frac{3}{4}$,则a1=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,若sin2B=sinA•sinC,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则(  )
A.b=-2,c=3B.b=-2,c=2C.b=-2,c=-1D.b=2,c=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图的程序框图,若输出的S的值为-88,则判断框中的条件可能为(  )
A.n>6?B.n≥7?C.n>8?D.n>9?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{{x^2}+2x+a}}{x}$(x>0).
(I)当a>0时,求函数f(x)的最小值;
(Ⅱ)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案