精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=asin(x-1)-lnx在区间(0,1)上为减函数,其中a∈R.
(1)求a的取值范围;
(2)证明:$sin\frac{1}{2^2}+sin\frac{1}{3^2}+…+sin\frac{1}{{{{(n+1)}^2}}}<ln2$.

分析 (1)先求导,再根据f(x)=asin(x-1)-lnx在区间(0,1)上为减函数,分离参数,构造函数,求出函数的最值,问题得以解决;
(2)取a=1得到sin(1-x)<ln$\frac{1}{x}$,取1-x=$\frac{1}{(n+1)^{2}}$得到sin$\frac{1}{(n+1)^{2}}$<ln$\frac{(n+1)^{2}}{n(n+2)}$,累加和根据对数的运算性质和放缩法即可证明.

解答 解:(1)∵f(x)=asin(x-1)-lnx在区间(0,1)上为减函数,
∴f′(x)=acos(x-1)-$\frac{1}{x}$≤0,在x∈(0,1)恒成立,
即a≤$\frac{1}{xcos(x-1)}$,在x∈(0,1)恒成立,
令g(x)=$\frac{1}{xcos(x-1)}$,
∴g′(x)=$\frac{xsin(x-1)-cos(x-1)}{{x}^{2}co{s}^{2}(x-1)}$<0,
∴g(x)在(0,1)单调递减,
∴g(x)>g(1),
∴a≤g(1)=1,
∴a的取值范围为(-∞,1],
(2)∵f(x)在x∈(0,1)上单调递减,取a=1,
∴f(x)=sin(x-1)-lnx>f(1)=0,
∴sin(x-1)>lnx,
∴sin(1-x)<ln$\frac{1}{x}$
取1-x=$\frac{1}{(n+1)^{2}}$得到sin$\frac{1}{(n+1)^{2}}$<ln$\frac{(n+1)^{2}}{n(n+2)}$,
∴sin$\frac{1}{{2}^{2}}$+sin$\frac{1}{{3}^{2}}$+…+sin$\frac{1}{(n+1)^{2}}$<ln[$\frac{{2}^{2}}{1×(1+2)}$•$\frac{{3}^{2}}{2×(2+2)}$•$\frac{{4}^{2}}{3×(3+2)}$…$\frac{(n-1)^{2}}{(n-2)n}$•$\frac{{n}^{2}}{(n-1)(n+1)}$•ln$\frac{(n+1)^{2}}{n(n+2)}$]=ln$\frac{2}{1}•\frac{n+1}{n+2}$<ln,
问题得以证明.

点评 本题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-ax+$\frac{1-a}{x}$+1 (a∈R).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当a∈($\frac{1}{3}$,1)时,若对任意t∈[2,3],在x∈(0,t]时,函数f(x)的最小值为f(t),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各函数的最值.
(1)f(x)=$\frac{1}{2}$x+sin x,x∈[0,2π];
(2)f(x)=x3-3x2+6x-2,x∈[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC的内角A,B,C的对边分别为a,b,c,若${b^2}+{c^2}-{a^2}=\sqrt{3}bc$,则角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是(  )
A.5B.7C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的公差$d=\frac{3}{4}$,${a_{30}}=15\frac{3}{4}$,则a1=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则(  )
A.b=-2,c=3B.b=-2,c=2C.b=-2,c=-1D.b=2,c=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx(a>0,b∈R,c∈R),g(x)是f(x)的导函数.
(1)若函数g(x)的最小值是g(-1)=0,且c=1,h(x)=$\left\{\begin{array}{l}g({x-1}),x≥1\\-g({x-1}),x<1\end{array}$,求h(2)+h(-2)的值;
(2)若a=1,c=0,且|g(x)|≤1在区间(0,2]上恒成立,试求b的取值范围.

查看答案和解析>>

同步练习册答案