精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)满足f(0)=-8,f(4)=f(-2)=0.
(1)求f(x)的解析式,并求出函数的值域;
(2)若f(x-2)=x2-12,求x的值.
分析:(1)利用条件f(4)=f(-2)=0.可得二次函数的两个零点4,-2,设二次函数的方程,利用f(0)=-8确定二次函数的方程即可.
(2)由f(x-2)=x2-12,直接解方程即可.
解答:解:∵f(4)=f(-2)=0,∴二次函数的两个零点4,-2,
设f(x)=a(x-4)(x+2),(a≠0)
∵f(0)=-8,∴f(0)=-8a=-8,解得a=1,
∴f(x)=(x-4)(x+2)=x2-2x-8,
又f(x)=x2-2x-8=(x-1)2-9≥-9,
∴函数的值域为[-9,+∞).
(2)∵f(x)=(x-4)(x+2),
∴由f(x-2)=x2-12,
得f(x-2)=(x-2-4)(x-2+2)=(x-6)x=x2-12,
即x2-6x=x2-12,
∴6x=12,解得x=2.
点评:本题主要考查二次函数解析式的求法,以及二次函数的性质,要求熟练掌握二次函数的相关性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案