精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log4(ax2+2x+3)
(1)若f(1)=1,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
(1)∵f(x)=log4(ax2+2x+3)且f(1)=1,
∴log4(a•12+2×1+3)=1?a+5=4?a=-1
可得函数f(x)=log4(-x2+2x+3)
∵真数为-x2+2x+3>0?-1<x<3
∴函数定义域为(-1,3)
令t=-x2+2x+3=-(x-1)2+4
可得:当x∈(-1,1)时,t为关于x的增函数;
当x∈(1,3)时,t为关于x的减函数.
∵底数为4>1
∴函数f(x)=log4(-x2+2x+3)的单调增区间为(-1,1),单调减区间为(1,3)
(2)设存在实数a,使f(x)的最小值为0,
由于底数为4>1,可得真数t=ax2+2x+3≥1恒成立,
且真数t的最小值恰好是1,
即a为正数,且当x=-
2
2a
=-
1
a
时,t值为1.
a>0
a( -
1
a
)2+2(-
1
a
)+3 =1 
?
a>0
-
1
a
+2 =0
?a=
1
2

因此存在实数a=
1
2
,使f(x)的最小值为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案