精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式,x≠0.
(1)判断函数f(x)在(0,+∞)上的单调性;
(2)证明:对任意正数a,存在正数x,使不等式|f(x)-1|<a成立.

解:(1)f′(x)==,-----------------(2分)
令h(x)=(x-1)ex+1,则h′(x)=ex+ex(x-1)=xex
当x>0时,h′(x)=xex>0,∴h(x)是上的增函数,
∴h(x)>h(0)=0
故f′(x)=>0,即函数f(x)是(0,+∞)上的增函数.-----------------(6分)
(2)|f(x)-1|=||,
当x>0时,令g(x)=ex-x-1,则g′(x)=ex-1>0-----------------(8分)
故g(x)>g(0)=0,∴|f(x)-1|=
原不等式化为<a,即ex-(1+a)x-1<0,-----------------(10分)
令∅(x)=ex-(1+a)x-1,则∅′(x)=ex-(1+a),
由∅(x)=0得:ex=1+a,解得x=ln(1+a),
当0<x<ln(1+a)时,∅′(x)<0;当x>ln(1+a)时,∅′(x)>0.
故当x=ln(1+a)时,∅(x)取最小值∅[ln(1+a)]=a-(1+a)ln(1+a),-----------------(12分)
令s(a)=-ln(1+a),a>0则s′(a)=<0.
故s(a)<a(0)=0,即∅[ln(1+a)]=a-(1+a)ln(1+a)<0.
因此,存在正数x=ln(1+a),使原不等式成立.----------------(14分)
分析:(1)利用导数的办法,通过导数大于或小于0判断函数的单调性.
(2)先将|f(x)-1|化为|f(x)-1|=,从而原不等式化为<a,即ex-(1+a)x-1<0.令∅(x)=ex-(1+a)x-1,利用导数研究它的单调性和最值,最后得到存在正数x=ln(1+a),使原不等式成立.
点评:本题主要考查了函数单调性的判断方法、导数在最大值、最小值问题中的应用.利用导数判断函数的单调性常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案