精英家教网 > 高中数学 > 题目详情

已知函数f(x)=,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设的极小值点,在[1-,0]上,处取得最大值,在处取得最小值,将点依次记为A, B, C

(I)求的值

(II)若ABC有一边平行于x轴,且面积为,求a ,d的值

【解析】(I)解:

,得

时, ;

时,

所以f(x)在x=-1处取得最小值即

(II)

的图像的开口向上,对称轴方程为

上的最大值为

又由

时,取得最小值为,即

由三角形ABC有一条边平行于x轴知AC平行于x轴,所以,即

又由三角形ABC的面积为

利用b=a+d,c=a+2d,得

联立(1)(2)可得.

解法2:

又c>0知上的最大值为

即:

又由

时, 取得最小值为,即

由三角形ABC有一条边平行于x轴知AC平行于x轴,所以,即

又由三角形ABC的面积为

利用b=a+d,c=a+2d,得

联立(1)(2)可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案