精英家教网 > 高中数学 > 题目详情

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

【答案】B

【解析】

利用余弦定理求出BC的数值,正弦定理推出∠ACB的余弦值,利用cosθ=cos(∠ACB+30°)展开求出cosθ的值.

如图所示,

△ABC中,AB=40,AC=20,∠BAC=120°,

由余弦定理得BC2=AB2+AC2﹣2ABACcos120°=2800,

所以BC=20

由正弦定理得sin∠ACB=sin∠BAC=

∠BAC=120°∠ACB为锐角,故cos∠ACB=

cosθ=cos(∠ACB+30°)=cos∠ACBcos30°﹣sin∠ACBsin30°=

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构观察了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图如图,则新生婴儿的体重在[3.2,4.0)(kg)的有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.

(1)求直线BE与平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex[ x3﹣2x2+(a+4)x﹣2a﹣4],其中a∈R,e为自然对数的底数.
(1)若函数f(x)的图象在x=0处的切线与直线x+y=0垂直,求a的值;
(2)关于x的不等式f(x)<﹣ ex在(﹣∞,2)上恒成立,求a的取值范围;
(3)讨论函数f(x)极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an=3n﹣2,f(n)= + +…+ ,g(n)=f(n2)﹣f(n﹣1),n∈N*
(1)求证:g(2)>
(2)求证:当n≥3时,g(n)>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,∠ABC的对边分别为, , ,若,

(1)求∠B的大小;

(2) ,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G:=1(a>b>0)的离心率为,经过左焦点F1(-1,0)的直线l与椭圆G相交于A,B两点,y轴相交于点C,且点C在线段AB.

(1)求椭圆G的方程;

(2)|AF1|=|CB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+bex , (b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q为真,求实数x的取值范围;

(2)若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案