精英家教网 > 高中数学 > 题目详情
3.在△ABC中,若sin(C-B)=1,sinA=$\frac{1}{3}$,BC=$\sqrt{6}$,则△ABC的面积为3$\sqrt{2}$.

分析 由sin(C-B)=1,B,C∈(0,π).可得C-B=$\frac{π}{2}$.可知B为锐角.由于sinA=$\frac{1}{3}$,可得sin(B+C)=$\frac{1}{3}$,再利用倍角公式可得cosB,sinB.sinC=$sin(B+\frac{π}{2})$=cosB=$\frac{\sqrt{6}}{3}$.
再利用正弦定理可得b,c,再利用三角形面积计算公式即可得出.

解答 解:∵sin(C-B)=1,B,C∈(0,π).
∴C-B=$\frac{π}{2}$.可知B为锐角.
∵sinA=$\frac{1}{3}$,
∴sin(B+C)=$\frac{1}{3}$,
∴$sin(2B+\frac{π}{2})$=$\frac{1}{3}$,
∴$\frac{1}{3}$=cos2B=2cos2B-1,
解得cosB=$\frac{\sqrt{6}}{3}$.
∴sinB=$\frac{\sqrt{3}}{3}$.sinC=$sin(B+\frac{π}{2})$=cosB=$\frac{\sqrt{6}}{3}$.
由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴b=$\frac{asinB}{sinA}$=$\frac{\sqrt{6}×\frac{\sqrt{3}}{3}}{\frac{1}{3}}$=3$\sqrt{2}$,
c=$\frac{asinC}{sinA}$=$\frac{\sqrt{6}×\frac{\sqrt{6}}{3}}{\frac{1}{3}}$=6.
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×3\sqrt{2}×6×\frac{1}{3}$=3$\sqrt{2}$.
故答案为:3$\sqrt{2}$.

点评 本题考查了正弦定理、三角形面积计算公式、倍角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.正弦函数y=sinx与余弦函数y=cosx都是周期函数,它们的周期都为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an},{bn}都是等比数列,当n≤3时,bn-an=2n,若数列{an}唯一,则a1=(  )
A.-2B.$\frac{2}{3}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若曲线2x=$\sqrt{4+{y}^{2}}$与直线y=m(x+1)有公共点,则实数m的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式$\frac{x-2}{x+1}$<0的解集相同的是(  )
A.$\left\{\begin{array}{l}{x-2>0}\\{x+1<0}\end{array}\right.$B.$\left\{\begin{array}{l}{x-2<0}\\{x+1>0}\end{array}\right.$C.(x-2)(x+1)<0D.(x-2)(x+1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知⊙C:(x-3)2+(y-4)2=1,点A(-1,0),B(1,0),点P是圆上的动点,求d=|PA|2+|PB|2的最大值、最小值及对应的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式(x-y)(x+y)≥0所表示的平面区域为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\sqrt{5}$,求下列各式的值:
(1)a+a-1
(2)a2+a-2
(3)a2-a-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinx=-$\frac{\sqrt{3}}{3}$,x∈[-2π,2π],求角x.

查看答案和解析>>

同步练习册答案