精英家教网 > 高中数学 > 题目详情
已知函数.对于任意实数x恒有
(1)求实数的最大值;
(2)当最大时,函数有三个零点,求实数k的取值范围。
(1)3;(2)

试题分析:(1)根据函数求出导函数,再根据所给的不等式,利用恒成立的条件求出实数的范围,从而确定的最大值.
(2)由(1)可得的值,从而根据函数确定函数的解析式,由于函数有三个零点,所以通过对函数求导,了解函数的图像的走向,以及对函数的极值的正负性作出规定,即可得到所需的结论.
试题解析:(1)   对于恒有,即对于恒成立
  
(2)有三个零点
有三个不同的实根 ,则
解得
情况如下表:







+
0

0
+

单调递增
极大值8
单调递减
极小极
单调递增
由上表知,当取得极大值,当取得极小值
数形结合可知,实数的取值范围为 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=+a,g(x)=aln x-x(a≠0).
(1)求函数f(x)的单调区间;
(2)求证:当a>0时,对于任意x1,x2,总有g(x1)<f(x2)成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记函数的导函数为f¢(x),则f¢(1)的值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=x3+x2+tan θ,其中θ∈,则导数f′(1)的取值范围是(  )
A.[-2,2]B.[,]
C.[,2]D.[,2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线f(x)=x2+3x在点A处的切线的斜率为7,则A点坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x2f′(x)为f(x)的导函数,则f′(x)的图象是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+bx2+cx+d在区间[-2,2]上是减函数,则b+c的最大值为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-ln xx∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则(  )
A.a<-1B.a>-1
C.a>-D.a<-

查看答案和解析>>

同步练习册答案