分析 由条件可得二次函数的对称轴x=1,及顶点(1,-8),且a>0,再由韦达定理,得到a,b,c的关系,解方程可得f(x)的解析式.
解答 解:由①可得x=1为二次函数的对称轴,
由②可得顶点为(1,-8),且a>0,
设ax2+bx+c=0的两根为m,n,
则m+n=2,
m+n=-$\frac{b}{a}$,mn=$\frac{c}{a}$,
由③,可得m2+n2=10,
即(m+n)2-2mn=10,
即$\frac{{b}^{2}}{{a}^{2}}$-$\frac{2c}{a}$=10,①
a+b+c=-8,②
又-$\frac{b}{a}$=2③
由①②③解得a=2,b=-4,c=-6.
即有f(x)的解析式为f(x)=2x2-4x-6.
点评 本题考查二次函数的解析式的求法,考查韦达定理的运用,以及化简运算求解能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2015 | B. | 2016 | C. | 2054 | D. | 2055 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com