精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较+++…+与1的大小,并说明理由.
见解析
+++…+<1.
理由如下:
∵f'(x)=x2-1,an+1≥f'(an+1),
∴an+1≥(an+1)2-1.
令g(x)=(x+1)2-1,则函数g(x)=x2+2x在区间[1,+∞)上单调递增,于是由a1≥1,得a2≥(a1+1)2-1≥22-1,进而得a3≥(a2+1)2-1≥24-1>23-1,
由此猜想:an≥2n-1.
下面用数学归纳法证明这个猜想:
①当n=1时,a1≥21-1=1,结论成立;
②假设n=k(k≥1且k∈N*)时结论成立,即ak≥2k-1,则当n=k+1时,由g(x)=(x+1)2-1在区间[1,+∞)上单调递增知,ak+1≥(ak+1)2-1≥22k-1≥2k+1-1,即n=k+1时,结论也成立.
由①②知,对任意n∈N*,都有an≥2n-1,
即1+an≥2n,∴,
+++…++++…+==1-()n<1.
【方法技巧】“归纳——猜想——证明”类问题的一般解题思路
通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用,其关键是归纳、猜想出公式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明对n∈N都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)
(1)写出a2, a3, a4的值,并猜想数列{an}的通项公式;
(2)用数学归纳法证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证的不等式是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则对于          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(n)=1+(n∈N*),则f(k+1)-f(k)=________.

查看答案和解析>>

同步练习册答案