已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、.
(1)经判断点,在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.
(1);(2);(3)或.
【解析】
试题分析:(1)先设抛物线,然后将或代入可得,从而确定了的方程,也进一步确定、不在上,只能在上;设:,把点、代入得,求解即可确定的方程;(2)由(1)中所求得的方程不难得到的焦点及椭圆的离心率;(3)先假设所求直线的方程(或,不过此时要先验证直线斜率不存在的情况),然后联立直线与椭圆的方程,消去消去,得,得到,再得到,要使,只须,从中求解即可得到,从而可确定直线的方程.
试题解析:(1)设抛物线,则有,而、在抛物线上 2分
将坐标代入曲线方程,得 3分
设:,把点、代入得
解得
∴方程为 6分
(2)显然,,所以抛物线焦点坐标为
由(1)知,,
所以椭圆的离心率为 8分
(3)法一:直线过抛物线焦点,设直线的方程为,两交点坐标为,
由消去,得 10分
∴①
② 12分
由,即,得
将①②代入(*)式,得,解得 14分
所求的方程为:或 15分
法二:容易验证直线的斜率不存在时,不满足题意 9分
当直线斜率存在时,直线过抛物线焦点,设其方程为,与的交点坐标为
由消掉,得, 10分
于是,①
即② 12分
由,即,得
将①、②代入(*)式,得
解得 14分
故所求的方程为或 15分.
考点:1.抛物线的标准方程及其几何性质;2.椭圆的标准方程及其几何性质;3.直线与圆锥曲线的综合问题.
科目:高中数学 来源:2015届山东省文登市高二上学期期末统考文科数学试卷(解析版) 题型:选择题
设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2015届山东省文登市高二上学期期末统考文科数学试卷(解析版) 题型:选择题
在复平面上,点对应的复数是,线段的中点对应的复数是,则点 对应的复数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2015届山东淄博临淄中学高二上学期期末考试理数学试卷(解析版) 题型:填空题
下列命题中,真命题的有________.(只填写真命题的序号)
①若则“”是“”成立的充分不必要条件;
②若椭圆的两个焦点为,且弦过点,则的周长为
③若命题“”与命题“或”都是真命题,则命题一定是真命题;
④若命题:,,则:.
查看答案和解析>>
科目:高中数学 来源:2015届山东淄博临淄中学高二上学期期末考试理数学试卷(解析版) 题型:选择题
“”是 “”的( )条件
A.必要不充分 B.充分不必要 C.充分必要 D.既不充分也不必要
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com