精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=25与直线l:y=-交于A、B,以大于半圆的AB上的动点P为圆心与l相切的圆记为圆P,求△PAB未被圆P覆盖部分的面积的最大值.

思路解析:根据圆和三角形相交部分的图形面积和被覆盖的比例求出未被圆覆盖部分的面积的表达式,可以借助三角函数求最值.

解:|AB|=5,圆心角∠AOB=,所以∠APB=,S=S△PAB-S扇形=

(yP+)·5- (yP+)2·.

,即时,Smax.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为(  )
A.x+y=2B.2x+y=
10
C.
2
x+y=
6
D.3x+y=2
5

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市闵行区七宝中学高三(下)摸底数学试卷(解析版) 题型:选择题

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为( )
A.x+y=2
B.
C.
D.

查看答案和解析>>

同步练习册答案