精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,且a2=5,S5=45.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
4anan+1
}
的前n项和Tn
分析:(I)根据已知中差数列{an}的前n项和为Sn,且a2=5,S5=45,我们由此构造关于基本量(首项和公差)的方程,解方程即可得到数列{an}的通项公式;
(II)由(I)中结论,我们易写出数列{
4
anan+1
}
的通项公式,观察到数列{
4
anan+1
}
的通项公式为分式的形式,故可以用裂项法求前n项和Tn
解答:解:(I)设等差数列{an}的首项为a1,公差为d,
∵a2=5,S5=45
∴a1+d=5
5(a1+2d)=45
解得:a1=1,d=4
则an=4n-3
(II)由(I)得
4
anan+1
=
4
(4n-3)(4n+1)
=
1
4n-3
-
1
4n+1

∴Tn=(1-
1
5
)+(
1
5
-
1
9
)+…+(
1
4n-3
-
1
4n+1

=1-
1
4n+1
=
4n
4n+1
点评:本题考查的知识眯是等差数列的通项公式及数列求和,其中根据已知条件构造关于基本量(首项和公差)的方程,进而得到数列{an}的通项公式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案