精英家教网 > 高中数学 > 题目详情
已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
(Ⅰ);(Ⅱ)

试题分析:该题考察抛物线的方程、韦达定理、直线和抛物线的位置关系、向量等基础知识,考察数形结合、综合分析和解决问题能力、基本运算能力,(Ⅰ)求直线的方程:,和抛物线联立,得
,代入 向量式中,得,然后联立
可得,∴抛物线方程为;(Ⅱ)设直线的方程:,线段的中点,将联立,可得,因为直线与抛物线交与两点,所以,可得,再表示中点,进而可求线段的中垂线方程,令,可得其在轴的截距,求其值域即可.
试题解析:(1)设,由已知k1时,l方程为
即x=2y-4.


又∵
                                                     5分
由p>0得,即抛物线方程为:
(2)设l:,BC中点坐标为
得:
∴x0=2k,y0=k(x0+4)=2k2+4k.
∴BC的中垂线方程为y?2k2?4k=?(x?2k)
∴BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2
对于方程①由△=16k2+64k>0得:
∴                                          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.
(1)若直线的斜率为,求证:
(2)设直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上与焦点的距离等于6的点横坐标是(   )
A.1 B.2C.3  D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线与抛物线有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的标准方程是___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知轴上一点抛物线上任意一点满足的取值范围是( )
A.  B.  C. D.

查看答案和解析>>

同步练习册答案