精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其中左焦点为F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=5上,求m的值.

分析 (1)由c=2,根据椭圆的离心率公式e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,求得a=2$\sqrt{2}$,b2=a2-c2=4,即可求得椭圆C的方程;
(2)将直线方程代入椭圆方程,根据韦达定理及中点坐标公式求得M的坐标,代入圆方程即可求得m的值.

解答 解:(1)由左焦点F(-2,0).即c=2,
根据椭圆离心率公式可得e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,解得:a=2$\sqrt{2}$,
由b2=a2-c2=4,
∴椭圆的标准方程:$\frac{x^2}{8}+\frac{y^2}{4}=1$,
(2)点A、B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),
由$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$消y得,3x2+4mx+2m2-8=0,
△=96-8m2>0,解得:-2$\sqrt{3}$<m<2$\sqrt{3}$,
由韦达定理可知:x1+x2=-$\frac{4m}{3}$,
∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2m}{3}$,y0=x0+m=$\frac{m}{3}$,
∵点M(x0,y0)在圆x2+y2=5上,
∴(-$\frac{2m}{3}$)2+($\frac{m}{3}$)2=5,解得:m=±3,
∴m的值±3.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查韦达定理及中点坐标公式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{x-a}$-$\frac{λ}{x-2}$,其中a,λ∈R.
(I)当a=4,λ=1时,判断函数f(x)在(3,4)上的单调性,并说明理由;
(II)记A1={(x,y)|x>0,y>0},A2={(x,y)|x<0,y>0},A3={(x,y)|x<0,y<0},A4={(x,y)|x>0,y<0}.M={(x,y)|y=f(x)},若对任意的λ∈(1,3)恒有M∩Ai≠∅(i=1,2,3,4)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程x2+y2-2x+m=0表示一个圆,则x的范围是(  )
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=x2+3ax+4,b-3≤x≤2b是偶函数,则a-b的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程ln(2x+1)=ln(x2-2);
求函数f(x)=($\frac{1}{2}$)2x+2×($\frac{1}{2}$)x(x≤-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(x2-2)<f(2),则实数x的取值范围(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某工厂2015年生产某产品2万件,计划从2016年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg2=0.3010,lg3=0.4771)(  )
A.2019年B.2020年C.2021年D.2022年

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$,证明:f(x)是R上的增函数;
(2)解方程:log5(3-2•5x)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在正方体ABCD-A'B'C'D'中,点P在线段AD'上,且AP≤$\frac{1}{2}$AD'则异面直线CP与BA'所成角θ的取值范围是[$\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

同步练习册答案