精英家教网 > 高中数学 > 题目详情

,且时,

(其中p,q为非负整数,且),则的值为(    )

A.0                        B.1     C.2        D.与有关

A


解析:

,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=2lnx-x2+ax,a∈R.
(1)当a=2时,求函数f(x)的图象在x=1处的切线的方程;
(2)若函数f(x)-ax+m=0在[
1e
,e]
上有两个不等的实数根,求实数m的取值范围;
(3)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0(其中实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)某城市为了改善交通状况,需进行路网改造.已知原有道路a个标段(注:1个标段是指一定长度的机动车道),拟增建x个标段的新路和n个道路交叉口,n与x满足关系n=ax+b,其中b为常数.设新建1个标段道路的平均造价为k万元,新建1个道路交叉口的平均造价是新建1个标段道路的平均造价的β倍(β≥1),n越大,路网越通畅,记路网的堵塞率为μ,它与β的关系为μ=
12(1+β)

(Ⅰ)写出新建道路交叉口的总造价y(万元)与x的函数关系式:
(Ⅱ)若要求路网的堵塞率介于5%与10%之间,而且新增道路标段为原有道路标段数的25%,求新建的x个标段的总造价与新建道路交叉口的总造价之比P的取值范围;
(Ⅲ)当b=4时,在(Ⅱ)的假设下,要使路网最通畅,且造价比P最高时,问原有道路标段为多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知数列{an}的前n项和为Sn,且满足a1=a(a≠3),an+1=Sn+3n,设bn=Sn-3n,n∈N*
(1)求证:数列{bn}是等比数列;
(2)若an+1≥an,n∈N*,求实数a的最小值;
(3)当a=4时,给出一个新数列{en},其中en=
3 , n=1
bn , n≥2
,设这个新数列的前n项和为Cn,若Cn可以写成tp(t,p∈N*且t>1,p>1)的形式,则称Cn为“指数型和”.问{Cn}中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=loga
x-1
x+1
(其中a>0且a≠1),g(x)是f(x)的反函数.
(1)已知关于x的方程loga
m
(x+1)(7-x)
=f(x)在区间[2,6]上有实数解,求实数m的取值范围;
(2)当o<a<1时,讨论函数f(x)的奇偶性和增减性;
(3)设a=
1
1+p
,其中p≥1.记bn=g(n),数列{bn}的前n项的和为Tn(n∈N*),求证:n<Tn<n+4.

查看答案和解析>>

同步练习册答案