精英家教网 > 高中数学 > 题目详情

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名六年级学生进行了问卷调查,得到如下列联表(平均每天喝以上为常喝,体重超过为肥胖):

常喝

不常喝

合计

肥胖

不胖

合计

(1)已知在全部人中随机抽取人,求抽到肥胖的学生的概率?

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;

(3)现从常喝碳酸饮料且肥胖的学生中(其中名女生),抽取人参加电视节目,则正好抽到一男一女的概率是多少?

(参考公式:,其中

【答案】(1)(2)有的把握(3)

【解析】分析:(1)肥胖的学生有人,利用古典概型的概率计算公式,即可求解概率;

(2)由已知数据利用公式求得的值,即可得到有的把握认为肥胖与常喝碳酸饮料有关.

(3)设常喝碳酸饮料的肥胖者男生为,女生为,得任取两人的基本事件的总数,利用古典概型的概率计算公式即可求解.

详解:(1)肥胖的学生有人,所以抽到肥胖的学生的概率为.

(2)由已知数据可求得:.

因此有的把握认为肥胖与常喝碳酸饮料有关.

(3)设常喝碳酸饮料的肥胖者男生为,女生为,则任取两人有,,共种.

其中一男一女有,共8种.

故抽到一男一女的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线与直线平行。

(1)求切线的方程;

(2)若函数有3个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每月生产某种产品四件,经检测发现,工厂生产该产品的合格率为,已知生产一件合格品能盈利100万元,生产一件次品将会亏损50万元,假设该产品任何两件之间合格与否相互没有影响.

(1)若该工厂制定了每月盈利额不低于250万元的目标,求该工厂达到盈利目标的概率;

(2)求工厂每月盈利额的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当 时,函数 的图象与轴交于两点 ,且 ,又的导函数.若正常数 满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理,得到的结论正确的是( )

A. 直线,若,则.类比推出:向量,若,则.

B. 三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,类比推出,可得出四面体的体积为,(分别为四面体的四个面的面积,为四面体内切球的半径)

C. 同一平面内,直线,若,则.类比推出:空间中,直线,若,则.

D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)已知函数,求的极值;

(2)已知函数,若存在实数,使得当时,函数的最大值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导函数,已知,且,则使得成立的的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案