精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方形,点分别中点,将分别沿起,使两点重合于.

求证

二面角余弦值.

【答案】详见解析

【解析】

试题分析:证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明往往利用线面垂直判定与性质定理,即从线线垂直出发给予证明,而线线垂直的寻找与论证往往需结合平几知识进行:连接,则根据等腰三角形性质得求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系求解

试题解析:证明:连接连接.

正方形,点点,点点,

以在等腰中点,且

因此在等腰

从而

以平面

平面.…………………6

方法一:

正方形,连接设正方形边长为2,

于点点,点点,

从而

是,在翻折后的几何体中,二面角平面角,

正方形

以,在

余弦定理

以,面角余弦值为.………………………………12

方法二

题知两互相垂直,原点,向量方向分别为的正方向建立如图的空间直角坐标系.

正方形边长为2,.

.

平面一个法向量,

,得

由题知平面一个法向量,

.

以,二面角余弦值为.………………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在各棱长为的直四棱柱中,底面为棱形, 为棱上一点,且

(1)求证:平面平面

(2)平面将四棱柱分成上、下两部分,求这两部分的体积之比.

(棱台的体积公式为,其中分别为上、下底面面积, 为棱台的高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)若函数满足:

对任意的,当时,有成立;

恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,四边形是直角梯形, 底面 的中点, 点在上,且.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E=1(ab>0),其左右焦点为F1F2,过F2的直线l交椭圆E于A,B两点,△AB F1的周长为8,且△AF1F2的面积最大时,△AF1F2为正三角形。

(1)求椭圆E的方程;

(2)若MN是椭圆E经过 原点的弦,MN||AB,求证: 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为2的等边三角形, 的中点.

(1)求证: 平面

(2)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线,直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中的值;

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛,假设甲乙两人都是等可能地做这三种手势.

(1)列举一次比赛时两人做出手势的所有可能情况;

(2)求一次比赛甲取胜的概率,并说明“石头、剪刀、布”这个广为流传的游戏的公平性.

查看答案和解析>>

同步练习册答案