精英家教网 > 高中数学 > 题目详情
4.某保险公司利用兼点堆积抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)01000200030004000
车辆数(辆)500130100150120
(1)若每辆车的投保金额为2800元,估计赔付金额为大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获陪金额为4000元的概率.

分析 (1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.
(2)设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率

解答 解:(1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得
P(A)=$\frac{150}{1000}$=0.15,P(B)=$\frac{120}{1000}$=0.12,
由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.
(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,
所以样本中车辆中新司机车主获赔金额为4000元的频率为$\frac{24}{100}$=0.24,
由频率估计概率得P(C)=0.24.

点评 本题主要考查了用频率来表示概率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.当n∈N*时,定义函数N(n)表示n的最大奇因数,如N(1)=1,N(2)=1,N(3)=3,记S(n)=N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1)(n∈N*),则:
(1)S(3)=16;
(2)S(n)=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设公差不为零,各项均为正数的等差数列{an}满足a2=$\sqrt{{8a}_{1}+1}$,且a1,a3,a13构成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{\sqrt{{a}_{n}}}$,数列{bn}的前n项和为Sn,求证:Sn>$\sqrt{2n+1}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.DN是指大气中直径小于或等于CB微米的颗粒物,也称为可入肺颗粒物,我国PM2.5的标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75∈微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某市环保局从该市市区2013年某月每天的PM2.5监测数据中随机抽取6天的数据作为样本,得到如下茎叶图.日均值
(Ⅰ)若从这6天的数据中随机抽出4天,求至多有一天空气超标的概率;
(Ⅱ)根据这6天的PM2.5日均值来估计当月(按30天计算)的空气质量情况,则该月中平均有多少天的空气质量达到一级或二级?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2012)+f(2013)+f(2014)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x2+x-2在x=1处的切线方程为3x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.袋中有大小相同的3个红球,7个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a2sinC=3,cosC=$\frac{{a}^{2}+4{a}^{2}-9}{4{a}^{2}}$,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$;从袋中任意摸出2个球,至少得到1个白球的概率是$\frac{7}{9}$.
(1)若袋中共有10个球,①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期E(ξ);
(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于$\frac{7}{10}$,并指出袋中哪种颜色的球个数最少.

查看答案和解析>>

同步练习册答案