精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x),g(x)满足f(x)g(x)=ax,且f′(x)g(x)+f(x)•g′(x)<0,f(1)g(1)+f(-1)g(-1)=
10
3
,若有穷数列{f(n)g(n)}(n∈N*)的前n项和等于
40
81
,则n等于______.
由(f(x)g(x))′=f′(x)g(x)+f(x)•g′(x)<0,
即axlna<0,故0<a<1.
由f(1)g(1)+f(-1)g(-1)=
10
3

得a+
1
a
=
10
3
,解得a=
1
3

∴有穷数列{f(n)g(n)}(n∈N*)是等比数列,其前n项和Sn=
1
3
(1-(
1
3
)
n
)
1-
1
3
=
40
81

得n=4.
故答案为:4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知可导函数f(x)(x∈R)的导函数f′(x)满足f′(x)>f(x),则不等式ef(x)>f(1)ex的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数求导运算正确的个数为(  )
①(3x)′=3xlog3e;
②(log2x)′=
1
xln2

③(ex)′=ex
④(
1
lnx
)′=x;
⑤(x•ex)′=ex+1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=sinx-cosx且f′(x)是f(x)的导函数,若f′(α)=2f(α),则tan2α=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间上单调递增,且方程的根都在区间上,则实数b的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与函数的图像有三个相异的交点,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=-cosx+ex,则f′(1)的值为(  )
A.sin1-eB.e-sin1C.-e-sin1D.e+sin1

查看答案和解析>>

同步练习册答案