精英家教网 > 高中数学 > 题目详情
双曲线x2-y2=3的离心率e为(  )
分析:先把双曲线方程变形为标准方程,求出a,b,c的值,再根据双曲线的离心率e=
c
a
来计算即可.
解答:解:双曲线x2-y2=3可变形为
x2
3
-
y2
3
=1

∴a=
3
,b=
3
,∴c=
6

离心率e=
c
a
=
6
3
=
2

故选B
点评:本题主要考查双曲线的离心率的求法,根据离心率的定义,只需求出a,c.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点(1,1)的直线与双曲线x2-y2=3只有一个公共点的直线条数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x
2
 
-
y
2
 
3
=1
的右焦点为F,O为坐标原点.以F为圆心,FO为半径的圆与此双曲线的两条渐近线分别交于点A,B (不同于O 点),则|AB|=?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-y2=-3的(    )

A.顶点坐标是(±,0),虚轴端点坐标是(0,±)

B.顶点坐标是(0,±),虚轴端点坐标是(±,0)

C.顶点坐标是(±,0),渐近线方程是y=±x

D.虚轴端点坐标是(0,±),渐近线方程是x=±y

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-y2=-3的(    )

A.顶点坐标是(±,0),虚轴端点坐标是(0,±)

B.顶点坐标是(0,±),虚轴端点坐标是(±,0)

C.顶点坐标是(±,0),渐近线方程是y=±x

D.虚轴端点坐标是(0,±),渐近线方程是x=±y

查看答案和解析>>

同步练习册答案