精英家教网 > 高中数学 > 题目详情
8.已知m,n是不同的直线,α,β是不重合的平面,给出下面四个命题:
①若α∥β,m?α,n?β,则m∥n
②若m,n?α,m∥β,n∥β,则α∥β
③若m,n是两条异面直线,若m∥α,m∥β,n∥α,n∥β,则α∥β
④如果m⊥α,n∥α,那么m⊥n
上面命题中,正确的序号为(  )
A.①②B.①③C.③④D.②③④

分析 ①,若α∥β,m?α,n?β,则m∥n或异面;
②,若m,n?α,m∥β,n∥β且m、n相交,则α∥β;
③,若m,n是两条异面直线,若m∥α,n∥α,在平面α内一定存在两条平行m、n的相交直线,由面面平行的判定可知α∥β;
④,如果m⊥α,m垂直平面α内及与α平行的直线,故m⊥n;

解答 解:对于①,若α∥β,m?α,n?β,则m∥n或异面,故错;
对于②,若m,n?α,m∥β,n∥β且m、n相交,则α∥β,故错;
对于③,若m,n是两条异面直线,若m∥α,n∥α,在平面α内一定存在两条平行m、n的相交直线,由面面平行的判定可知α∥β,故正确;
对于④,如果m⊥α,m垂直平面α内及与α平行的直线,故m⊥n,故正确;
故选:C

点评 本题考查了空间线线,线面,面面的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N.
(Ⅰ)求点N的轨迹C的方程;
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),是否存在一个定点T,使得T,A′,B三点共线?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f (x)=ax-lnx(a∈R).
(1)当a=1时,求f (x)的最小值;
(2)已知e为自然对数的底数,存在x∈[$\frac{1}{e}$,e],使得f (x)=1成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f (x)≥f ($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范围;
(2)若a=1,求函数f(x)的值域.
(3)若f(x)的值域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=$\sqrt{3}$,B是A,C的等差中项,则角C=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以(-3,4)为圆心,$\sqrt{3}$为半径的圆的标准方程为(  )
A.(x-3)2+(y+4)2=3B.(x-3)2+(y-4)2=3C.(x+3)2+(y-4)2=3D.$(x+3{)^2}+(y-4{)^2}=\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案