精英家教网 > 高中数学 > 题目详情
(1)已知集合A={x|x2=1},B={x|ax=1},若A∪B=A,求所有实数a的值组成的集合.
(2)已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∪B=B,A∩B={2},分别求实数b,c,m的值.
分析:(1)因为A∪B=A得到A⊆B即A中的任意元素都属于A,列出不等式求出解集即可得到由实数a的取值组成的集合.
(2)由A∩B={2},求得m=-5.从而得出B={x|x2-5x+6=0}={2,3}又A∪B=B,∴A⊆B.得到集合A={2},最后即可求得实数b,c,m的值.
解答:解:(1)由于A={-1,1},B⊆A(2分)
当B=∅时,有a=0(4分)
当B≠∅时,有B={-1}或B={1},又B={
1
a
}

1
a
=-1或
1
a
=1
∴a=±1(5分)
∴a=0或a=±1,得a∈{-1,0,1}(7分)
(2)∵A∩B={2},∴2∈B∴22+m×2+6=0,m=-5.
∴B={x|x2-5x+6=0}={2,3}(9分)
∵A∪B=B,∴A⊆B.
又∵A∩B={2}∴A={2}(12分)
故方程x2+bx+c=0有两个相等的根x1=x2=2,
由根与系数的关系得:
∴b=-(2+2)=-4,C=2×2=4
∴b=-4,c=4,m=-5.(14分)
点评:考查学生理解交集、并集定义及运算的能力.解答的关键是应用集合的运算性质A∪B=A,一般A∪B=A转化成B⊆A来解决.若是A∩B=A,一般A∩B=A转化成A⊆B来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、与集合交汇.例1:已知集合A={x|x2-y2=1},B={y|x2=4y},则(CRA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
①函数f(x)=
a2-x2
|x+b|-b
(b>a>0)
为奇函数;
②函数y=
1-x
的值域为{y|0≤y≤1};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,
1
3
};
④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.
其中正确命题的序号为:

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|x2=1},B={x|ax=1},若A∪B=A,求实数a的值.
(2)已知全集U={1,2,3,4,5,6,7,8,9},A⊆U,B⊆U,且(?UA)∩B={1,9},A∩B={2},(?UA)∩(?UB)={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求实数m的值组成的集合.
(2)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足
x2-x-6≤0
x2+2x-8>0
,若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|3≤x<7},B={x|2<x<10},全集为实数集R.求 (?RA)∩B;
(2)计算:2(lg
2
)2+lg
2
•lg5+
(lg
2
)
2
-lg2+1

查看答案和解析>>

同步练习册答案