精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1-x)=f(1+x).若向量
a
=(
m
,-1)
b
=(
m
,-2)
,则满足不等式f(
a
b
)>f(-1)
的m的取值范围为
 
分析:
a
b
=m+2
将不等式f(
a
b
)>f(-1)
转化为f(m+2)>f(-1),再由f(1-x)=f(1+x)可知函数f(x)的图象关于直线x=1对称,又开口向下,利用二次函数的图象特征求解.
解答:解:∵
a
b
=m+2

∴不等式f(
a
b
)>f(-1)
转化为:
f(m+2)>f(-1)
∵f(1-x)=f(1+x).
∴函数f(x)的图象关于直线x=1对称
又开口向下
∴-1<m+2<3
∴-3<m<1
又∵m≥0
∴0≤m<1
故答案为:0≤m<1
点评:本题主要考查二次函数的单调性和对称性,还考查了数量积运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案