(理)已知向量m=(sinωx+cosωx,
cosωx),n=(cosωx-sinωx,2 sinωx),其中ω>0,函数f(x)=m·n,若f(x)相邻两对称轴间的距离为
.
(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,△ABC的面积S=5
,b=4,f(A)=1,求边a的长.
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
已知向量m=(
,1),n=(
,
)。
(I) 若m•n=1,求
的值;
(II) 记f(x)=m•n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足
(2a-c)cosB=bcosC,求函数f(A)的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年山东卷理)已知a,b,c为△ABC的三个内角A,B,C的对边,向量m=(
),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,则角B=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com