精英家教网 > 高中数学 > 题目详情
已知正数a、b、c满足a+b+c=1,求证:(1-a)
a
2
3
9
考点:不等式的证明
专题:证明题
分析:依题意知,0<a<1,令y=(1-a)
a
,可求得y2=(1-a)2a=
1
2
×2a(1-a)(1-a),利用基本不等式2a(1-a)(1-a)≤[
2a+(1-a)+(1-a)
3
]
3
=
4
27
,再开方即可证得结论.
解答: 解:∵a+b+c=1,a,b,c为正数,∴0<a<1,
令y=(1-a)
a

则y2=(1-a)2a=
1
2
×2a(1-a)(1-a)
1
2
×[
2a+(1-a)+(1-a)
3
]
3
=
4
27

∴y≤
2
3
9
,即(1-a)
a
2
3
9
点评:本题考查不等式的证明,考查构造函数思想,利用基本不等式2a(1-a)(1-a)≤[
2a+(1-a)+(1-a)
3
]
3
=
4
27
是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z的虚部为1,且
z
1+i
为纯虚数,其中i是虚数单位,则z=(  )
A、-1-iB、1+i
C、1-iD、-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=-2x+1
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足
an+1
an
=q,且q≠0,数列{bn}满足bn=na1+(n-1)a2+(n-2)a3+…+2an-1+an(n∈N*),已知b1=m,b2=
3m
2
,其中m≠0:
(Ⅰ)当m=1时,求bn
(Ⅱ)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn2-4sn+3≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校高三学生的视力情况,随机抽查了该校50名高三学生,得到如图所示的频率分布直方图.
(Ⅰ)求图中x的值;
(Ⅱ)若从视力在[0.2,0.6)的学生中随机选取2人,求这2人视力均在[0.2,0.4)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AD为圆O的直径,直线BA与圆O相切于点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12,则BM=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于以下结论:
①若y=f(x)是奇函数,则f(0)=0;
②已知p:事件A、B是对立事件,q:事件A、B是互斥事件,则p是q的必要但不充分条件;
ln5
5
ln3
3
1
e
(e为自然对数的底数);
④若
a
=(1,2),
b
=(0,-1),则
b
a
上的投影为
2
5
5

⑤若随机变量ξ~N(1,4),则P(ξ≤1)=
1
2

其中,正确结论的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解高三学生的身体状况,抽取了部分男生的体重,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为15,则抽取的男生总人数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
cos15°-2sin15°
sin15°
=
 

查看答案和解析>>

同步练习册答案