精英家教网 > 高中数学 > 题目详情
5、函数f(x)=x2+ax+5对x∈R恒有f(-2+x)=f(-2-x),若x∈[m,0](m<0)时,f(x)的值域为[1,5],则实数m的取值范围是
[-4,-2]
分析:根据f(-2+x)=f(-2-x)得a的值为4,则f(x)=x2+4x+5=(x+2)2+1的最小值为1,与y轴交点为(0,5),因为若x∈[m,0](m<0)时,f(x)的值域为[1,5],所以根据二次函数的图象可知m的取值.
解答:解:根据f(-2+x)=f(-2-x)得此二次函数的对称轴为直线x=-2,得到a=4.
所以f(x)=x2+4x+5=(x+2)2+1是以x=-2为对称轴的抛物线;其最小值为1.
又因为若x∈[m,0](m<0)时,f(x)的值域为[1,5],
所以m≤-2时,函数才能取到顶点;
同时因为令y=5时,x=-4或0,所以m≥-4
则-4≤m≤-2
故答案为[-4,-2]
点评:考查学生利用函数值域求函数自变量范围的能力,以及函数与方程的综合运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案