精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=x3-3x2+2x,则过原点的切线方程为______.
解f′(x)=3x2-6x+2.设切线的斜率为k.
(1)当切点是原点时k=f′(0)=2,
所以所求曲线的切线方程为y=2x.
(2)当切点不是原点时,设切点是(x0,y0),
则有y0=x03-3x02+2x0,k=f′(x0)=3x02-6x0+2,①
又k=
y0
x0
=x02-3x0+2,②
由①②得x0=
3
2
,k=
y0
x0
=-
1
4

∴所求曲线的切线方程为y=-
1
4
x.
故曲线的切线方程是y=2x;y=-
1
4
x
故答案为:y=2x或y=-
1
4
x.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
x-1
在点A(2,1)处的切线为直线l
(1)求切线l的方程;
(2)求切线l,x轴及曲线所围成的封闭图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3+bx2+cx在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x=0.
(Ⅰ)求实数b,c的值;
(Ⅱ)若函数y=f(x),x∈[-
12
,3]
的图象与直线y=m恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案