精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x+x3,x1,x2,x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值(  )
A.一定大于0B.等于0C.一定小于0D.正负都有可能

分析 根据f(x)的解析式便可看出f(x)为奇函数,且在R上单调递增,而由条件可得到x1>-x2,x2>-x3,x3>-x1,从而可以得到f(x1)>-f(x2),f(x2)>-f(x3),f(x3)>-f(x1),这样这三个不等式的两边同时相加便可得到f(x1)+f(x2)+f(x3)>0,从而可找出正确选项.

解答 解:f(x)为奇函数,且在R上为增函数;
∵x1+x2>0,x2+x3>0,x3+x1>0;
∴x1>-x2,x2>-x3,x3>-x1
∴f(x1)>-f(x2),f(x2)>-f(x3),f(x3)>-f(x1);
∴f(x1)+f(x2)+f(x3)>-[f(x1)+f(x2)+f(x3)];
∴f(x1)+f(x2)+f(x3)>0.
故选:A.

点评 考查奇函数和增函数的定义,根据奇函数、增函数的定义判断一个函数为奇函数和增函数的方法,以及不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若三个正数a,b,c成等比数列,其中a=5+2$\sqrt{3}$,c=5-2$\sqrt{3}$,则b=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三个数a=0.36,b=60.7,c=log0.5$\frac{3}{2}$的大小关系为(  )
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不用计算器求下列各式的值.
(1)设${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求x+x-1的值;
(2)若xlog34=1,求4x+4-x的值;
(3)[(1-log63)2+log62•log618]÷log64
(4)$\frac{1}{{\sqrt{2}-1}}-{({\frac{3}{5}})^0}+{({\frac{9}{4}})^{-0.5}}+\root{4}{{{{(\sqrt{2}-e)}^4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},
(1)求A∩B,(∁UA)∪(∁UB);
(2)若集合M={x|2a≤x≤2a+1}是集合A的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1上在第一象限内的一点,过P作实轴的垂线,垂足为M(10,0),又过M作圆x2+y2=a2的切线,切点为Q,若cos∠MOQ=$\frac{3}{5}$,求双曲线的方程和点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a,b∈R,命题p:直线y=ax+b与圆x2+y2=1相交;命题$q:a>\sqrt{{b^2}-1}$,则p是q的 (  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案