精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.

1)求E的方程;

2)若点ABE上的两个动点,O为坐标原点,且,求证:直线AB恒过定点.

【答案】(1); (2)见解析

【解析】

1)由抛物线定义可知动圆的圆心轨迹为抛物线,根据焦点及准线方程可求得抛物线的标准方程.

2)设出直线AB的方程,联立抛物线,化简后结合韦达定理,表示出,根据等量关系可求得直线方程的截距,即可求得所过定点的坐标.

1)由题意动圆P相切,且与定圆外切

所以动点P的距离与到直线的距离相等

由抛物线的定义知,P的轨迹是以为焦点,直线为准线的抛物线

故所求P的轨迹方程E

2)证明:设直线,,,

将直线AB代入到中化简得,

所以,

又因为

所以

则直线AB恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面.

1)求证 平面

2是棱长上的一点,若二面角的正弦值为的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,分别是棱,

上的点,,

1) 求异面直线所成角的余弦值;

2) 证明平面

3) 求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的最小值;

(2)若时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若对任意都有成立则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的“十八大”之后,做好农业农村工作具有特殊重要的意义.国家为了更 好地服务于农民、开展社会主义新农村工作,派调查组到农村某地区考察.该地区有100户农 民,且都从事蔬菜种植.据了解,平均每户的年收入为6万元.为了调整产业结构,当地政府决 定动员部分农民从事蔬菜加工.据统计,若动员户农民从事蔬菜加工,则剩下的继续 从事蔬菜种植的农民平均每户的年收入有望提高,而从事蔬菜加工的农民平均每户的年收入为万元.

(1)在动员户农民从事蔬菜加工后,要使剩下户从事蔬菜种植的所有农民总年收 入不低于动员前100户从事蔬菜种植的所有农民年总年收入,求的取值范围;

(2)在(1)的条件下,要使这户农民从事蔬菜加工的总年收入始终不高于户从事蔬菜种植的所有农民年总年收入,求的最大值.(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为( )

A. 56 B. 72 C. 64 D. 84

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为).

(1)补充完整列联表中的数据,并判断是否有的把握认为甲、乙两套治疗方案对患者白血病复发有影响;

(2)从复发的患者中抽取3人进行分析,求其中接受“乙方案”治疗的人数的数学期望.

附:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为正数的等比数列,首项,前n项和为,且成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和

查看答案和解析>>

同步练习册答案