【题目】如图,在长方体
中,
、
分别是棱
,![]()
![]()
上的点,
,![]()
(1) 求异面直线
与
所成角的余弦值;
(2) 证明![]()
平面![]()
![]()
(3) 求二面角
的正弦值.
【答案】(1)
,(2)见解析(3)![]()
【解析】
方法一:如图所示,建立空间直角坐标系,
![]()
点A为坐标原点,设
,依题意得
,
,
,![]()
(1) 解:易得
,![]()
于是![]()
所以异面直线
与
所成角的余弦值为![]()
(2) 证明:已知
,
,![]()
于是
·
=0,
·
=0.因此,
,
,又![]()
所以
平面![]()
(3)解:设平面
的法向量
,则
,即![]()
不妨令X=1,可得
.由(2)可知,
为平面
的一个法向量.
于是
,从而![]()
所以二面角
的正弦值为![]()
方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=![]()
链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由
,可知EF∥BC1.故
是异面直线EF与A1D所成的角,易知BM=CM=
,所以
,所以异面直线FE与A1D所成角的余弦值为![]()
(2)证明:连接AC,设AC与DE交点N 因为
,所以
,从而
,又由于
,所以
,故AC⊥DE,又因为CC1⊥DE且
,所以DE⊥平面ACF,从而AF⊥DE.
连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为
,所以AF⊥平面A1ED
(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF
平面ACF, A1N
平面ACF,所以DE⊥NF,DE⊥A1N,故
为二面角A1-ED-F的平面角
易知
,所以
,又
所以
,在![]()
![]()
连接A1C1,A1F 在![]()
.所以![]()
所以二面角A1-DE-F正弦值为![]()
科目:高中数学 来源: 题型:
【题目】根据教育部高考改革指导意见,广东省从2021年正式实施“
”新的高考考试方案.为尽快了解学生的选科需求,及时调整学校人力资源配备.某校从高一学生中抽样调查了100名同学,在模拟分科选择中,一半同学(其中男生38人)选择了物理,另一半(其中男生14人)选择了历史.请完成以下
列联表,并判断能否有99.9%的把握说选科与性别有关?
参考公式:
,其中
为样本容量.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |||
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |||
选物理 | 选历史 | 总计 | ||||||||
男生 | ||||||||||
女生 | ||||||||||
总计 | ||||||||||
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某蔬菜商店买进的土豆
(吨)与出售天数
(天)之间的关系如下表所示:
| 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请根据上表数据在下列网格纸中绘制散点图;
![]()
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
(其中
保留三位小数);(注:
)
(3)在表格中(
的8个对应点中,任取3个点,记这3个点在直线
的下方的个数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销10天,两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.经统计,两个厂家10天的试销情况茎叶图如下:
![]()
(Ⅰ)现从厂家试销的10天中抽取两天,求这两天的销售量都大于40的概率;
(Ⅱ)若将频率视作概率,回答以下问题:
(ⅰ)记乙厂家的日返利额为
(单位:元),求
的分布列和数学期望;
(ⅱ)商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场做出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一张矩形白纸
,
,
,
,
分别为
,
的中点,现分别将
,
沿
,DF折起,且
、
在平面
同侧,下列命题正确的是_________(写出所有正确命题的序号)
![]()
①平面
平面
时,![]()
②当平面
平面
时,
平面![]()
③当
、
重合于点
时,![]()
④当
、
重合于点
时,三棱锥
的外接球的半径为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(1)求E的方程;
(2)若点A,B是E上的两个动点,O为坐标原点,且
,求证:直线AB恒过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com